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Mechanism for neuronal spike generation by small and large ion channel clusters
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Neuronal action potentials are generated by clusters of ion channels between the Hillock and the first
segment. If the clusters comprise a large number of sodium and potassium channels, action potentials are
generated if the membrane potential exceeds a threshold of about =55 mV. Such behavior is well described
by an excitable model such as, for example, the Hodgkin-Huxley equations. In this paper we show through
stochastic modeling that if the size of the generating ion channel cluster is small, action potentials are gener-
ated regardless of whether the membrane potential is below or above the excitation threshold. Action potential
generation is then determined by single-channel kinetics. We further show that this switch in generation
mechanism manifests itself in peculiar statistical properties of the generated spike trains at small cluster sizes.
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I. INTRODUCTION pressed in the statistical properties of the neuronal spike

Conductance-based models for the transmembrane voiti@in. We further explore the role of synaptic noise on the
age of neurons—pioneered in the seminal paper by Hodgkigeneration of action potentials by a small and I.arge cluste(s
and Huxley[1]—are the cornerstone of modern computa-Of ion channels in the neuronal membrane. Since synaptic
tional neuroscience. The essential idea is that the condudOise is extrinsic to the ion channel processes that generate
tance of the membrane is determined by the conductance #fe action potentials, it appears as noise term in the equation
the potassium and sodium systems which in turn is deterfor the membrane voltage. Intrinsic channel noise appears in
mined by the membrane potential. The nonlinear dependendbe equations for the gating variablg,11. In Sec. Il, we
of the sodium and potassium conductance on the membrartescribe the stochastic Hodgkin-Huxley model in the pres-
potentials generates action potentials that travel down thence of channel noise and synaptic noise. In Sec. IlI, four
axon to contact other neurons. The conductance of sodiulgorithms are described that are commonly used to evaluate
and potassium through the membrane is facilitated by spahe stochastic Hodgkin-Huxley model, the straightforward
cific ion channels that individually switch stochastically be- simulation of each individual gate of each channel, a Markov
tween the open and the closed state as demonstrated by Ng-ocess mimicking transitions between occupation-number
her and Sakmaifi2]. Experiments show that individual ion states of the ion channel cluster, the Gillespie method, and a
channels open and close randomly with membrane-voltageangevin approach. In Sec. IV we describe results for the
dependent opening and closing raf2s3]. The deterministic  spiking rates, variability of the spiking and temporal coher-
Hodgkin-Huxley equation$l] describe the dynamics of the ence of the generated spike trains. In Sec. V our results are
membrane potential if the number of ion channels is verysummarized.
large, i.e., when conductance fluctuations are negligible. If
the action potentials are generated by a cluster of sodium and
potassium channels that comprises few channels only, sto- We adopt the classic model for the ion channels intro-
chastic effects become important, giving rise to spontaneouguced by Hodgkin and Huxley that models the potassium
spiking [4,5]. In such situations, stochastic Hodgkin-Huxley channel by four identical gates that stochastically switch be-
equations have to be employed to describe the transmenaween an open state and a closed state. The open probabili-
brane potential[6-11. When the ion channel number is ties p, for the four gatesn=1,2,3,4 aredescribed by the
large, the stochastic Hodgkin-Huxley equations will ap-rate equations
proach the conventional Hodgkin-Huxley equati¢h,11. .

The effects of channel noigas a function of the size of the Pn(t) = —[ax (v) + Bk () ]pn(t) + ax (v), (1)
ion channel clustgthave been studied recently in the contextyyhere o, (v) and Bk (v) are the membrane-voltagedepen-
of the cohgrence of the g.enerated neuronal splke traigent opening and closing rates

[12,13. Besides channel noise, other sources of noise are

1. MODEL

important. Synaptic noise is generated by stochastic effects, (0) = 0.01(10 -v) Bi(0) = 0.125 exp| - -
in the transport of neurotransmitter through the synaptic cleft™ < v exd(10-v)/10]-1" ¢ v ' P 80/
as well as by the relative small number of postsynaptic re- ?)

ceptors. Furthermore, a neuron is often contacted by a large

number of other neurons whose signals can act like a noise The transmembrane voltageis measured here and in all
source [14]. Other sources of noise are ligand-gated ionequations below in millivolt with respect to the physiologic
channelg/15]. In this paper we report on the differences of cellular resting potential of -65 mV. The potassium chan-
the mechanism of action potential generation by small andhel is open only when all four gates are open, i.e., with
large ion channel clusters and how these differences are eprobability p;p,pspa-
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The sodium channel consists of four gates. Three identical o -
fast gates increase their opening probabitifyd,,q; when closed| open
the voltagev becomes larger than the resting potential. The B

slower fourth deactivation gate decreases its open probability
g, when the membrane potential increases. The gate vari-
ables obey the following rate equations:

FIG. 1. Kinetic scheme of a two-state channel.

The time scale of synaptic noise is about one order of
an(t) = — [al1(v) + Blav)1an(t) + al(v) magnitude smaller than channel noiggee, e.g., in Ref.
[16]). Thus we can consider synaptic noise as Gaussian white
noise &(t) with

Qa(t) = = [aRa(v) + BRa(v)]da(t) + axe(v), ©)
with the opening and closing rates
‘ B 01(25 _U) ‘ B v <§S(t)§s(t )> = 025“ _t )1 (7)
ang(v) = exf (25 —0)/10] - 1’ Bra(v) = 4.0 exp| - 18/’  whereo describes the strength of the synaptic noise. Since
synaptic leads to events that are integrated, it has to be added
1 to the right-hand side of Eg5), i.e.,
s v
ay (v) =0.07 exp(— —), ,3% (U) = . NePen open 1
’ 2077 T exd(30 -uyi0)+ 1 )= —( (=0 + B0 o)+ —w))
(4) Tk Nk TNalVNa L
The membrane voltage is measured in millivolt with re- &0, (8)
spect to the resting potential.
Although each individual ion channel opens and closes lll. METHODS
independently, the opening and closing rafles the n gate, To integrate Eq(8), the numbers of open sodium and

they area;, and f3,) are regulated by the same membrane,assium channels have to be determined at each instant. It
potential. As a consequence all ion channels are globallys 555umed that the subunits of the sodium and potassium
coupled through the membrane potential. For the density 0fhannels are not cooperative and that they switch between
the sodium and potaSS|ur2n chann@dﬂmberzof channels per e gpen and closed states according to a Markov process.
areg we Usepy,=60/um? and p=20/um*, respectively.  There are several methods to simulate the patch of ion chan-

The single-channel conductances of the sodium and potagg|s Each method has some advantages and disadvantages.
sium channels are given byy,=v=20 pS. Except for

pk=20/um? these values have been reported for the giant A. Simple stochastic method

squid a;r(g” [1]. Using a membrane capacitance of g method assumes that all gates open and close accord-
1 wF/cnr we end up with the following equation for the i, 14 5 two-state Markov process with voltage dependent

membrane potential: opening and closing rates. For example, the two-state Mar-
N open 1 kov process of a single gate is ske.tched in Fig.. 1, where the
R ( K (p = pleo) + —Na_(, _revy =, v|)> , transition ratea and B are the opening and closing rates of
TNk naNNa gl the subunit. If the gate is closed at tirheit will open with

(5) the probability st and remain closed with probability 1
—adt in the time intervat,t+ ét for sufficiently smallét, i.e.,
where vi’=-12 mV, v;x=115 mV, andy;=10.6 mV  §<1/a. If the gate is open at timg it will close with the
denote reversal potentials of the potassium systems, sodiuprobability 86t and remain open with probability 135t in
system, and leakage system, respectively. The time constarttee time intervalt,t+ 6t for sufficiently small &, i.e., &

are given by <1/B. We update the state of each gate by drawing a ran-
dom number from the unit interval from a uniform distri-
1 bution. If the gate is closed at tinteand r < aét, the gate
K= gms remains closed while it opensrif> aét. Similarly, if the gate

is open at timd andr < B&, the gate remains open while it

closes ifr > Bét. This method is obviously inefficient since

- many transitions of gates between the open and closed state

120 do not change the state of the channel and thus the conduc-

tance of the channel. It is, however, the most accurate meth-

71.=33 ms. (6) ods since no other assumptions than the Markov process
have been made.

The numbers of open Kand Nd& channels,NP*" and _

NRES", respectively, have to be determined as a function of B. Markov-process for the occupation numbers

time by stochastic simulations with methods described in the Instead of keeping track of the state of each gate, one can

following section. keep track only of the total populations of channels in each
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B 2B 3B 48 [ for sodium ion channelsto all possible successive states.
[n0]<4—a_>[n1]3—u>[n2]%[n3]—a> ny] For each ion channel in statat timet, the probability of the
ion channel remaining in that state in tfsfficiently smalj
FIG. 2. Kinetic scheme for a stochastic potassium channel. time intervalét is given byP=e"%%, wherey; is the sum of
all the transition rates from stat¢o any possible successive
possible statd8]. Each channel has either 0, 1, 2, 3, or 4 State. Su_fficiently_small means here that durifigho other N
gates open and can thus be in the corresponding statghannel is swnchmg the conductanc_e st_ate. The probablllty
S.,S,,S5, S, Thus the entire population of channels can ble thg cluster of |o[1k((9:thannels remaining in the same state in
completely described by specifying the numbers of channelime interval &t is e, where
[n],[n,],[n3],[n,4] in the states,;,S,,S;,S,. Stochastic tran- 3 1 4
sitions are considered between the occupation nunjlogs _
i=1,2,3,4.Assuming Markov processes for these transi- =2 2 [mby, +k§)[n"]yk'
tions, a corresponding kinetic scheme can be formalized that
explicitly incorporates the stochastic behavior of the i0nHere[mihj] denotes the number of sodium channels in state
channelgsee Fig. 2 o _ mh;, [n] the number of potassium channels in the stafe
Similarly, sodium channels can exist in eight different ., the total transition rate associated with escaping from
states, and the corresponding kinetic scheme is displayed &4t mh;, and y the total transition rate associated with
Fig. 3, where[mh;] is the number of sodium ion channels escaping from statey. For example, for staten;hy, vy,
with i open activating gates of type andj open inactivating =2am+ Bt Br. In order to pick a transition time, for a
gates of typeh. Thus,[msh,] denotes the number of open gpecific ion channel state, one can draw a pseudorandom
sodium channels. In order to update the state of the popularumberr; from the uniform distribution[0, 1] and find a
tion of ion channels with time, we have to C(eate rules intr_ansition time byttF'n(fIl)/?\- The next step in the stochas-
what sequence the states are updated. The simple stochasfica|gorithm is to select which of the 28 possible transitions
methods, described in the preceding section, does not requiggcurs in the time interval,. The conditional probability

such rules. In order to enforce positive occupation numberghat a particular transitiof occurs in the time intervadt is
we update the occupation numbers sequentially, starting Wltbiven by

the process with the largest rate and so forth. Let, for ex-

ample, the transition rate betwe8pandsS, be ¥s;s, and the a;t a

populations of these states pg] and[n,]. Then, the prob- 28 =Sm (11)
ability p that a channel switches within the time interval E.—l 6t Ei—l &

(t,t+a) from stateS, to S, is given by p=1yssdt. The . - _ .
probability that[ on;,] channels switch from sta® to state Wherea; is the product of the transition rate associated with

S, in the same time interval satisfies the binomial distributiontransitionj and the number of channels in the parent state
associated with that transition. Because the sum in the de-

P([ony,]) = (P;,l]]lz]) plonial(1 — p)nl=tonszh 9) nominator of 11 is a reordered version of 10, it also equals to

o \. A specific transition is selected by drawing a random vari-
Thus the number of switching channels between the states jgjer, from the uniform distributiof0,\], and determining
sequentially drawn from binomial distributions. If the clusterlu such that

of channels is large, i.eln;] is large, the number of switch-

ing channels is also large in the average. Thus, in the time w1 P

interval ét larger channel clusters experience more transi- Da<r,<>a. (12)
tions. i=1 i=1

(10
i=0 j=0

Then we can update the ion channel number in each state,
C. Gillespie’s method and can update the membrane potential consequently.

Similar as for the Markov process for the occupation
numbers, the entire population of ion channels is described at D. Langevin approach
each instant of time by the occupation numbers of all pos- . . .
sible states. At any instant of time, the ion channels are disLa:oé(vfr‘]ng t':ti[olr?s’lf]é rht";\ée gﬁgve\(/ja:g%i;ollovggg hsm?c:r of
tributed over the 13 states, and there are 28 possible tran§|- ge q e gatng A,
arge ion channel clusterge., when the number of channels

tions (8 transitions for potassium ion channels, 20 transitions .
In the cluster is large

Bm 2Bm, 3Bm q
[mgh,J<={m;h m,h; == {msh; ] 9 sl - BT,
oof Jor T ouf [ 207 it 5y o i B "= (= = B+ G0

[mohO%[mlho]ﬁmzho%[m3ho]

d _
—h=a(1-h) = Byh+gyt),
FIG. 3. Kinetic scheme of a stochastic sodium channel. dt an( )= Buh+ 9n()
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FIG. 5. Comparison of the relative fluctuatiofsq. (21)] of the
FIG. 4. Comparison of the average time intervals between subintervals between subsequent action potentials obtained from spike
sequent action potentials obtained from spike trains of 5000 actiotrains of 5000 action potentials fer=0 ando=2 uA/cm?. (X):
potentials fore=0 ando=2 uA/cm? (x): Langevin method at Langevin method a=0, (*): occupation number method at0,
=0, (*): occupation number method @t 0, (+): occupation num-  (+): occupation number method at=2 uA/cm?, (squarglLan-
ber method atr=2 uA/cm?, (squarg: Langevin method atr gevin method ab=2 uA/cm?.
=2 uAlcm?

d _ IV. RESULTS
—m= a1 -m) = Bym+gy(t), (13 ) .
dt We have compared the average time interval between two
where the variableg. (1) gu(t), G(t) denote Gaussian, zero- supsequent action potentlals and _the variance obtained from
mean white noise \?vr:gh) 9n(®), Gm(®) spike trains of 5000 action potentials that have been gener-
ated by the methods described above. The simple stochastic
2 ay(1-n)+Bn scheme, the Markov process method for the occupation num-

(an(tign(t’)) = S(t-t")

Ny 2 ber, and the Gillespie method yield results that agree within a
5% error. The Langevin method does not reproduce accurate
. 2 ay(1-m)+Bm results(see Figs. 4 and)5The disagreement is particularly
OmDgn(t)) = N 2 t-t') large in the absence of synaptic noise when the average time
Na interval between subsequent spikes diverges for large cluster
sizes.
(gn(tgn(t)) = iw&(t—t’). (14) The computation times for the different algorithms are
Nia 2 compared in Fig. 6. For the simple stochastic method, the

Here N¢ and Ny, denote the total number of potassium simulation times increase linear with the number of the chan-
a

and sodium channels. It is necessary to include restriction tg€lS in the cluster. The compute time for the Gillespie
guarantee that, n, andh do not leave the unit intervdD method also increases linear in size since the time steps—
1]. The differential equation for the membrane potential isdrawn from an exponential distribution with a linearly de-
the classic Hodgkin-Huxley equations wherh determines ~ C'€asing decay time—become smaller as the cluster size in-

the fraction of open sodium channels amftithe fraction of ~ créases. The Gillespie method is, however, much more
open potassium channels, i.e. efficient than the simple stochastic method. The occupation

number method appears to us as the most efficient method. It

) 1 1 1
v=- (—n4(v -+ —mPh(v - vy + —(v - v|))
L

7K TNa

+ (D). (15 400
Equationg13)—«15) have to be integrated numerically in or- § /
der to predict a neuronal spike train. This approach is based _8300
on the assumption that the threegates and the four gates §

2200

act each synchronously and can therefore be replaced by b=
single gates each. Furthermore, the resulting master equation > 100
is written in terms of a Kramers-Moyal expansion which
subsequently is truncated after the diffusion term. The result- 0 e ]
ing master equation can be converted into an Ito-Langevin 0 mambrane Mea (um2)15 20

equation(see aboveor an equivalent Stratonovich-Langevin

equation. The error made through these approximations is FIG. 6. Comparison of the compute times for clusters of Na
not controlled and the accuracy has been tested by compadnd K* channels to generate a train of 5000 action potentials using
ing the results with those obtained by the Markov simula-the simple stochastic methdd), the Markov process for the occu-
tions described above. pation numbexx), and the Gillespie methott).
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FIG. 8. The membrane potential in millivolt, the fraction of

FIG. 7. The average time interval between two subsequent ac2Pen sodium and potassium channels are shown as a function of
tion potentials(in ms) versus membrane ar¢m um?) at o=0(+) time for an ion channel cluster with infinitely many channels. The
o=2 pAlcm? (*), o=3 pAlcm?® (x), and =5 uAlcm? variance of the external noise is JuA/cm?. For better visibility,
(squarg. These results were obtained with the occupation numbefn€ fractions of open channels are multiplied by 20.
method.

] ) ] the spiking rate for small clusters where additional channel
leads to faster code with no cost in accuracy sidgeseveral  pgjse is present. We thus encounter the paradoxial situation
channels are updated at each time step @ndhe time in-  hat channel noise in addition to synaptic noise can actually
tervals are fixed independent of the cluster size. _ reduce the spontaneous firing rate. To understand this phe-

In order to further verify the accuracy of our simulations, nomenon it is insightful to consider the two extreme situa-
we have verified1) that the results obtained with the sto- tions of an infinitely large cluster of sodium and potassium
chastic schemes approach the deterministic Hodgkin-Huxleyhannels with synaptic noise and a cluster of three sodium
equations when the ion channel number is large@ndhat  channels and one potassium channel. We set the magnitude
our results agree with those in R¢8]. of the variancer of the synaptic noise as 5uA/cm?. The

The Langevin method does not reproduce accurate resulfiemprane potential, the fraction of open sodium ion chan-
for small and large cluster sizes and therefore we did Noke|s and the fraction of open potassium ion channels in the
compare the compute times of this method. case of an infinite cluster size are plotted in Fig. 8. Here the
membrane potential fluctuates about its rest state due to the
synaptic noise. An action potential is fired when the mem-
brane potential exceeds a threshgttf about -55 mVy

We consider the combined effect of channel noise angyhich is determined by the deterministic Hodgkin-Huxley
synaptic noise on the average interspike interBl as  equations. The average time interval between two successive
shown in Fig. 7 as a function of the cluster size in the abspikes is determined by the probability for the membrane
sence of an external stimulus. The fraction and density opotential to cross the threshold.
sodium versus potassium channels are kept constant while In the other extreme case, a small cluster of three sodium
the cluster size is increased. In the case of vanishing synaptighannels and one potassium channel is considered. The time
noise, the average interspike intery@) first decreases with course of the membrane potential, the number of open so-
increasing area of cluster, but then increases again since fdium channels, and the number of open potassium channels
infinitely many channels the deterministic Hodgkin-Huxley is shown in Fig. 9. As can be seen in Figap an action
model is approached. In the presence of synaptic noise, thgotential is fired exactly when one sodium channels opens,
spiking rate does not decrease to zero as the size of th@though the membrane potential is well below the firing
cluster becomes large. The average spiking rate approach#égeshold of the deterministic Hodgkin-Huxley equations
for large cluster sizes a constant value which is determine@about —-55 mV. In Fig. 9b), we show a trace of the mem-
by the synaptic noise only. This value, in fact/asger than  brane potential in comparison with the number of open chan-

A. Average interspike interval of the ion channel cluster

e ___ membrane potential &0 ~_ membrane potential

40 " ... open K* number 40 apen K* number
-~ open Na* number - open Na* numbgqj

FIG. 9. The membrane potenti@h millivolt),

20 \ 20 ‘ : the number of open sodium ion channels and the
Ql- SRS 0 : ] number of open potassium channels are shown as
a function of time for the membrane with one

- -20 . :
20 potassium channel and three sodium channels.
=40 ‘40,% v " The variance of external noise is uA/cmZ.
-60 P 60} Wy WW ,Ww”www‘j WM’\;/“"W ’ / The number of open channels have been multi-
P o™ 8 J i Ly plied by a factor of 20.
-84, 5 10 15 20 % 40 80 80 100
time (ms) time (ms)
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nels where the membrane potential is wedlovethreshold Pyty=1-[1- Po(t)]3, (19
but no action potential is fired. In contrast to the mechanism

of action potential generation by large clusters, the mecha-

g:zmoj‘o':hsem?rile%ubsrfrzz I;St?a tn?iea\tler{;)nul?ergt?e/::hgjlr'[lr?g t;:]i]ig:and thus the probability density of reopen times of any chan-
channel kinetics. To see this we show in the following thatnel within the cluster of three sodium channels reads
the average time for angof the thre¢ sodium channels of
the cluster to open after they all have been réafter action
potentia) to a state where all gates are closed agrees well
with the average time interval between two successive
spikes. In other words, we show that the average interspike
interval is determined by the activation time of the sodium
channels. A single sodium chanrnske Fig. 3 is described
by the following set of kinetic equations in which the rates
out of the open stategh; are discarded, i.e., thus generating
the cumulative probabilityP,(t) =[mgh,] for the probability
that the channel has opened in the time intef@at]

d .
pa(t) = Pa(t) = 3Po(0[1 - P 1%, (19

where the dot indicates a derivative with respect to time
The average opening time can then be obtained from

d =
STt = ameh] + Bl muh] = (8 + o], =] vt 20

Since the voltage is fluctuating for a cluster of three so-
dium and one potassium chanriske Figs. 8 the clamped
voltage in the rate equatiorj&g. (16)] is replaced by the
average voltage of —-55.49 mV. Plugging the solution of

d
d_t[moho] = Brlmohy ] + Brlmiho] — (ap + 3am)[Mgho],

d Eq. (16) into Egs.(17)—20) one finds the average opening
a[mlhl] = ap[miho] + 3a[mohy ] + 28, {mph ] time of 58.18 ms. This number compares favorably with the
average interspike interval of 58.71 ms for a cluster of three
= (Bm* 2am+ Bp)lmihy], sodium and one potassium channel obtained by stochastic

simulations. This agreement supports the above stated hy-
d _ pothesis that firing of action potentials in small channel clus-
dt[mlho] = Brlmihy ] + 3ar mgho] + 28, {mpho] ters is determined by single-channel kinetics and not a
threshold of the membrane potential.
= (Bm+ 2am* ap)[mih], As the cluster size is increased, the probability of opening
q just one sodium ion channel will increase since more sodium
=[mohy] = a[moho] + 2, [mMuhy] = (280 + am+ Br)[Mihy], channels are available. Thus, the spontaneous firing rate in-
dt creases with increasing cluster size and the average time in-
terval between subsequent spikes decreases—as can be ob-

d _ served in Fig. 7. When the cluster size further increases,
a[mZhO] = Brlmahy] + 2ag] myho] + 3B mgho] opening of single sodium channels will not always trigger an
action potential, a critical fraction of all available sodium

= (2Bm+ am+ an)[mihy], channels is required to be open—consistent with the mem-

brane potential crossing a threshold.

Thus the observed reduction of the spontaneous firing rate
in spite of additional channel noise reflects a change in the
mechanism by which spikes are generated as the ion channel
d clusters become smaller.
a[m3h0] = ap[mpho] = (an + 3Bm)[Mghol,  (16) As already mentioned earlier, the Langevin approximation

does not accurately reproduce these results.

d
a[mshl] = ap[mgho] + ap{ Mmphy ],

with the initial conditions

1 fori=j=0
[mth:| = {0 otherwise. (17) B. The relative fluctuation of average interspike interval

Assuming for now that the voltage is clamped, the solu- The variability of the interspike interval§ is described
tion for this set of equations for one single sodium channel iy the relative fluctuations

independent of the potassium conductance and can be solved

easily for the cumulative probabiliti,(t). Since the sodium

channels are independent, the cumulative probability that | 5

any of the three sodium channels has opened within the time - M

. b 7= : (21)
interval [0:t] is given by (M
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1 mined by the size of the cluster. Thus optimizing the size of
0.9 the cluster is somewhat equivalent to optimizing the noise
Sos strength. The relation between these phenomena, however, is
=i not so clear since the relation between cluster $izand
§0.7 noise intensity is not unique as the spontaneous firing(eate
=06 measure of the noise leyadxhibits a nonmonotonous behav-
= ior.
%0-5 As shown in Fig. 10, synaptic noise alters the relative
0.4} fluctuations mostly at larger membrane areas, where the
channel-noise induced spikes are infrequent. On the other
0'130-2 107 PO o102 100 hand, when the area of membrane is small, the statistical
memBfane ardd (um?) features of the neuronal spike train are mainly determined by

FIG. 10. The relative fluctuation®1) vs membrane areén channel noise.

wm?) at =0 (+), 0=2 wpAlcm? (*), 0=3 uAlcm? (x), ando
=5 pA/cm? (squarg. These results were obtained with the occu- V. DISCUSSION

pation number method.
We have compared the average interspike interval and the

relative fluctuations of trains of action potentials generated

The relative fluctuation of the interspike intervals are plot-by small and large clusters of ion channels. For large ion
ted versus the cluster size for various values of the strengtbhannel clusters, action potentials are elicited by synaptic
of the synaptic noise in Fig. 10. In the absence of synapti®ioise when the membrane potential exceeds an excitation
noise, the fluctuations of the intervals decrease with increaghreshold. For small ion channels clusters, channel noise
ing cluster size until they reach a minimum. For further in-dominates over synaptic noise. Action potentials are gener-
creasing cluster sizes, the fluctuations of the intervals inated at a frequency that is determined by the single-channel
crease agailisee also Refd12,13). The power spectra of kinetics and is only very weakly depending on the synaptic
the spike trains shown in Fig. 11 confirm that the spike trainnoise strength. We have further shown that at the size of the
exhibits a maximum temporal periodicity at the cluster sizeion channel cluster at which a maximum spontaneous spik-
where the relative fluctuations are at minimum ing rate is observed, the spike trains exhibit maximum tem-

The power spectrum of the spike train generated by goral periodicity. Different stochastic algorithms have been
membrane with area 0.1um? is relatively flat. At a mem- compared. Because the simple stochastic method requires the
brane area of 5 um? (near the point with minimal relative least number of assumptions itaspriori the most accurate
fluctuation) the power spectrum exhibits a peak close to themethod. For spike trains of 5000 spikes the occupation hum-
angular frequency of 0.37/ms, which corresponds to an avber method and the Gillespie method reproduce the results
erage interspike interval of about 17 ms, consistent with thebtained with the simple stochastic method within 5% error.
minimum average interspike intervi@ee Fig. 7. The power If the membrane comprisééion channels, M random num-
spectrum confirms the maximum temporal coherence of thbers are required for the simple stochastic method. Thus, the
spike train at the same cluster size where the cluster firesimulation time of the simple stochastic method increases
action potentials at it's highest rate. linearly with the number of ion channels. In the Gillespie’s

This phenomenon, where optimal coherence is achievethethod, the step time is inversely proportional No(15).
at a certain cluster size resembles somewhat the phenomen8ince the value ok is linearly proportional to the number of
of coherence resonan¢#7] or autonomous stochastic reso- ion channels number, the simulation step time is inversely
nance[18,19 since the intensity of the fluctuations is deter- proportional to the ion channel number. Thus, the simulation

time of the Gillespie’s method is also linearly proportional to

0.07 ' ‘ ‘ ' the number of ion channels—though with a smaller slope
0.06 ;’"’\\ than the simple stochastic method. In each simulation sfcep,
£ 0,08l ;;" ";\ | the occupation-number method needs to generate a fixed
3 / ' e number of 28 random numbers regardless of the number of
5 i P i . ; . . . .
g 0.04 \,/*’ ion channels number. Thus, the simulation time is approxi-
g 0.03 / mately independent of the number of the ion channels; in our
z 7 o~ tests it was the fastest method for a given accuracy. The
20.02 // e — Langevin-method—although designed for large ion channel
001 &= ] clusters generates accurate results only for intermediate clus-
0 ‘ ‘ ter sizes.
0 O'azngulapf‘r‘equen%)e} (1/ms(,))'8 1
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