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Neuronal action potentials are generated by clusters of ion channels between the Hillock and the first
segment. If the clusters comprise a large number of sodium and potassium channels, action potentials are
generated if the membrane potential exceeds a threshold of about −55 mV. Such behavior is well described
by an excitable model such as, for example, the Hodgkin-Huxley equations. In this paper we show through
stochastic modeling that if the size of the generating ion channel cluster is small, action potentials are gener-
ated regardless of whether the membrane potential is below or above the excitation threshold. Action potential
generation is then determined by single-channel kinetics. We further show that this switch in generation
mechanism manifests itself in peculiar statistical properties of the generated spike trains at small cluster sizes.

DOI: 10.1103/PhysRevE.70.011903 PACS number(s): 87.16.Uv, 87.15.Ya

I. INTRODUCTION

Conductance-based models for the transmembrane volt-
age of neurons—pioneered in the seminal paper by Hodgkin
and Huxley [1]—are the cornerstone of modern computa-
tional neuroscience. The essential idea is that the conduc-
tance of the membrane is determined by the conductance of
the potassium and sodium systems which in turn is deter-
mined by the membrane potential. The nonlinear dependence
of the sodium and potassium conductance on the membrane
potentials generates action potentials that travel down the
axon to contact other neurons. The conductance of sodium
and potassium through the membrane is facilitated by spe-
cific ion channels that individually switch stochastically be-
tween the open and the closed state as demonstrated by Ne-
her and Sakman[2]. Experiments show that individual ion
channels open and close randomly with membrane-voltage
dependent opening and closing rates[2,3]. The deterministic
Hodgkin-Huxley equations[1] describe the dynamics of the
membrane potential if the number of ion channels is very
large, i.e., when conductance fluctuations are negligible. If
the action potentials are generated by a cluster of sodium and
potassium channels that comprises few channels only, sto-
chastic effects become important, giving rise to spontaneous
spiking [4,5]. In such situations, stochastic Hodgkin-Huxley
equations have to be employed to describe the transmem-
brane potential[6–11]. When the ion channel number is
large, the stochastic Hodgkin-Huxley equations will ap-
proach the conventional Hodgkin-Huxley equations[10,11].
The effects of channel noise(as a function of the size of the
ion channel cluster) have been studied recently in the context
of the coherence of the generated neuronal spike train
[12,13]. Besides channel noise, other sources of noise are
important. Synaptic noise is generated by stochastic effects
in the transport of neurotransmitter through the synaptic cleft
as well as by the relative small number of postsynaptic re-
ceptors. Furthermore, a neuron is often contacted by a large
number of other neurons whose signals can act like a noise
source [14]. Other sources of noise are ligand-gated ion
channels[15]. In this paper we report on the differences of
the mechanism of action potential generation by small and
large ion channel clusters and how these differences are ex-

pressed in the statistical properties of the neuronal spike
train. We further explore the role of synaptic noise on the
generation of action potentials by a small and large clusters
of ion channels in the neuronal membrane. Since synaptic
noise is extrinsic to the ion channel processes that generate
the action potentials, it appears as noise term in the equation
for the membrane voltage. Intrinsic channel noise appears in
the equations for the gating variables[10,11]. In Sec. II, we
describe the stochastic Hodgkin-Huxley model in the pres-
ence of channel noise and synaptic noise. In Sec. III, four
algorithms are described that are commonly used to evaluate
the stochastic Hodgkin-Huxley model, the straightforward
simulation of each individual gate of each channel, a Markov
process mimicking transitions between occupation-number
states of the ion channel cluster, the Gillespie method, and a
Langevin approach. In Sec. IV we describe results for the
spiking rates, variability of the spiking and temporal coher-
ence of the generated spike trains. In Sec. V our results are
summarized.

II. MODEL

We adopt the classic model for the ion channels intro-
duced by Hodgkin and Huxley that models the potassium
channel by four identical gates that stochastically switch be-
tween an open state and a closed state. The open probabili-
ties pn for the four gatesn=1,2,3,4 aredescribed by the
rate equations

ṗnstd = − faKsvd + bKsvdgpnstd + aKsvd, s1d

whereaKsvd andbKsvd are the membrane-voltagev depen-
dent opening and closing rates

aKsvd =
0.01s10 −vd

expfs10 −vd/10g − 1
, bKsvd = 0.125 expS−

v
80
D .

s2d

The transmembrane voltagev is measured here and in all
equations below in millivolt with respect to the physiologic
cellular resting potential of −65 mV. The potassium chan-
nel is open only when all four gates are open, i.e., with
probability p1p2p3p4.
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The sodium channel consists of four gates. Three identical
fast gates increase their opening probabilityq1,q2,q3 when
the voltagev becomes larger than the resting potential. The
slower fourth deactivation gate decreases its open probability
q4 when the membrane potential increases. The gate vari-
ables obey the following rate equations:

q̇nstd = − faNa
f svd + bNa

f svdgqnstd + aNa
f svd

q̇4std = − faNa
s svd + bNa

s svdgq4std + aNa
s svd, s3d

with the opening and closing rates

aNa
f svd =

0.1s25 −vd
expfs25 −vd/10g − 1

, bNa
f svd = 4.0 expS−

v
18
D ,

aNa
s svd = 0.07 expS−

v
20
D, bNa

s svd =
1

expfs30 −vd/10g + 1
.

s4d

The membrane voltage is measured in millivolt with re-
spect to the resting potential.

Although each individual ion channel opens and closes
independently, the opening and closing rates(for the n gate,
they arean and bn) are regulated by the same membrane
potential. As a consequence all ion channels are globally
coupled through the membrane potential. For the density of
the sodium and potassium channels(number of channels per
area) we userNa=60/mm2 and rK =20/mm2, respectively.
The single-channel conductances of the sodium and potas-
sium channels are given bygNa=gK =20 pS. Except for
rK =20/mm2 these values have been reported for the giant
squid axon [1]. Using a membrane capacitance of
1 mF/cm2 we end up with the following equation for the
membrane potential:

v̇ = − SNK
open

tKNK
sv − vK

revd +
NNa

open

tNaNNa
sv − vNa

revd +
1

tL
sv − vldD ,

s5d

where vK
rev=−12 mV, vNa

rev=115 mV, andvl =10.6 mV
denote reversal potentials of the potassium systems, sodium
system, and leakage system, respectively. The time constants
are given by

tK =
1

36
ms

tNa =
1

120
ms

tL = 3.3 ms. s6d

The numbers of open K+ and Na+ channels,NK
open and

NNa
open, respectively, have to be determined as a function of

time by stochastic simulations with methods described in the
following section.

The time scale of synaptic noise is about one order of
magnitude smaller than channel noise(see, e.g., in Ref.
[16]). Thus we can consider synaptic noise as Gaussian white
noisejsstd with

kjsstdl = 0,

kjsstdjsst8dl = s2dst − t8d, s7d

wheres describes the strength of the synaptic noise. Since
synaptic leads to events that are integrated, it has to be added
to the right-hand side of Eq.(5), i.e.,

v̇ = − SNK
open

tKNK
sv − vK

revd +
NNa

open

tNaNNa
sv − vNa

revd +
1

tL
sv − vldD

+ jsstd. s8d

III. METHODS

To integrate Eq.(8), the numbers of open sodium and
potassium channels have to be determined at each instant. It
is assumed that the subunits of the sodium and potassium
channels are not cooperative and that they switch between
the open and closed states according to a Markov process.
There are several methods to simulate the patch of ion chan-
nels. Each method has some advantages and disadvantages.

A. Simple stochastic method

This method assumes that all gates open and close accord-
ing to a two-state Markov process with voltage dependent
opening and closing rates. For example, the two-state Mar-
kov process of a single gate is sketched in Fig. 1, where the
transition ratea andb are the opening and closing rates of
the subunit. If the gate is closed at timet, it will open with
the probability adt and remain closed with probability 1
−adt in the time intervalt ,t+dt for sufficiently smalldt, i.e.,
dt!1/a. If the gate is open at timet, it will close with the
probability bdt and remain open with probability 1−bdt in
the time intervalt ,t+dt for sufficiently small dt, i.e., dt
!1/b. We update the state of each gate by drawing a ran-
dom numberr from the unit interval from a uniform distri-
bution. If the gate is closed at timet and r ,adt, the gate
remains closed while it opens ifr .adt. Similarly, if the gate
is open at timet andr ,bdt, the gate remains open while it
closes ifr .bdt. This method is obviously inefficient since
many transitions of gates between the open and closed state
do not change the state of the channel and thus the conduc-
tance of the channel. It is, however, the most accurate meth-
ods since no other assumptions than the Markov process
have been made.

B. Markov-process for the occupation numbers

Instead of keeping track of the state of each gate, one can
keep track only of the total populations of channels in each

FIG. 1. Kinetic scheme of a two-state channel.
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possible state[8]. Each channel has either 0, 1, 2, 3, or 4
gates open and can thus be in the corresponding states
S1,S2,S3,S4. Thus the entire population of channels can be
completely described by specifying the numbers of channels
fn1g ,fn2g ,fn3g ,fn4g in the statesS1,S2,S3,S4. Stochastic tran-
sitions are considered between the occupation numbersfnig,
i =1,2,3,4.Assuming Markov processes for these transi-
tions, a corresponding kinetic scheme can be formalized that
explicitly incorporates the stochastic behavior of the ion
channels(see Fig. 2).

Similarly, sodium channels can exist in eight different
states, and the corresponding kinetic scheme is displayed in
Fig. 3, wherefmihjg is the number of sodium ion channels
with i open activating gates of typem and j open inactivating
gates of typeh. Thus, fm3h1g denotes the number of open
sodium channels. In order to update the state of the popula-
tion of ion channels with time, we have to create rules in
what sequence the states are updated. The simple stochastic
methods, described in the preceding section, does not require
such rules. In order to enforce positive occupation numbers
we update the occupation numbers sequentially, starting with
the process with the largest rate and so forth. Let, for ex-
ample, the transition rate betweenS1 andS2 be gS1S2

and the
populations of these states befn1g and fn2g. Then, the prob-
ability p that a channel switches within the time interval
st ,t+dtd from stateS1 to S2 is given by p;gS1S2

dt. The
probability thatfdn12g channels switch from stateS1 to state
S2 in the same time interval satisfies the binomial distribution

Psfdn12gd = sfdn12g
fn1g dpfdn12gs1 − pdsfn1g−fdn12gd. s9d

Thus the number of switching channels between the states is
sequentially drawn from binomial distributions. If the cluster
of channels is large, i.e.,fn1g is large, the number of switch-
ing channels is also large in the average. Thus, in the time
interval dt larger channel clusters experience more transi-
tions.

C. Gillespie’s method

Similar as for the Markov process for the occupation
numbers, the entire population of ion channels is described at
each instant of time by the occupation numbers of all pos-
sible states. At any instant of time, the ion channels are dis-
tributed over the 13 states, and there are 28 possible transi-
tions (8 transitions for potassium ion channels, 20 transitions

for sodium ion channels) to all possible successive states.
For each ion channel in statei at timet, the probability of the
ion channel remaining in that state in the(sufficiently small)
time intervaldt is given byP=e−gidt, wheregi is the sum of
all the transition rates from statei to any possible successive
state. Sufficiently small means here that duringdt no other
channel is switching the conductance state. The probability
of the cluster of ion channels remaining in the same state in
time intervaldt is e−ldt, where

l = o
i=0

3

o
j=0

1

fmihjggi j + o
k=0

4

fnkggk. s10d

Here fmihjg denotes the number of sodium channels in state
mihj, fnkg the number of potassium channels in the statenk,
gi j the total transition rate associated with escaping from
state mihj, and gk the total transition rate associated with
escaping from statenk. For example, for statem1h1,g11
=2am+bm+bh. In order to pick a transition timettr for a
specific ion channel state, one can draw a pseudorandom
number r1 from the uniform distribution[0, 1] and find a
transition time byttr =lnsr1

−1d /l. The next step in the stochas-
tic algorithm is to select which of the 28 possible transitions
occurs in the time intervalttr. The conditional probability
that a particular transitionj occurs in the time intervaldt is
given by

ajdt

oi=1

28
aidt

=
aj

oi=1

28
ai

, s11d

whereaj is the product of the transition rate associated with
transition j and the number of channels in the parent state
associated with that transition. Because the sum in the de-
nominator of 11 is a reordered version of 10, it also equals to
l. A specific transition is selected by drawing a random vari-
abler2 from the uniform distributionf0,lg, and determining
m such that

o
i=1

m−1

ai , r2 ø o
i=1

m

ai . s12d

Then we can update the ion channel number in each state,
and can update the membrane potential consequently.

D. Langevin approach

Fox and Liu [10,11] have derived the following set of
Langevin equations for the gating variablesn,m, andh for
large ion channel clusters(i.e., when the number of channels
in the cluster is large)

d

dt
n = ans1 − nd − bnn + ḡnstd,

d

dt
h = ahs1 − hd − bhh + ḡhstd,

FIG. 2. Kinetic scheme for a stochastic potassium channel.

FIG. 3. Kinetic scheme of a stochastic sodium channel.
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d

dt
m= ams1 − md − bmm+ ḡmstd, s13d

where the variablesḡnstd ,ḡhstd ,ḡmstd denote Gaussian, zero-
mean white noise with

kḡnstdḡnst8dl =
2

NK

ans1 − nd + bnn

2
dst − t8d

kḡmstdḡmst8dl =
2

NNa

ams1 − md + bmm

2
dst − t8d

kḡhstdḡhst8dl =
2

NNa

ahs1 − hd + bhh

2
dst − t8d. s14d

Here NK and NNa denote the total number of potassium
and sodium channels. It is necessary to include restriction to
guarantee thatm, n, andh do not leave the unit interval[0,
1]. The differential equation for the membrane potential is
the classic Hodgkin-Huxley equations wherem3h determines
the fraction of open sodium channels andn4 the fraction of
open potassium channels, i.e.,

v̇ = − S 1

tK
n4sv − vK

revd +
1

tNa
m3hsv − vNa

revd +
1

tL
sv − vldD

+ jsstd. s15d

Equations(13)–(15) have to be integrated numerically in or-
der to predict a neuronal spike train. This approach is based
on the assumption that the threem gates and the fourn gates
act each synchronously and can therefore be replaced by
single gates each. Furthermore, the resulting master equation
is written in terms of a Kramers-Moyal expansion which
subsequently is truncated after the diffusion term. The result-
ing master equation can be converted into an Ito-Langevin
equation(see above) or an equivalent Stratonovich-Langevin
equation. The error made through these approximations is
not controlled and the accuracy has been tested by compar-
ing the results with those obtained by the Markov simula-
tions described above.

IV. RESULTS

We have compared the average time interval between two
subsequent action potentials and the variance obtained from
spike trains of 5000 action potentials that have been gener-
ated by the methods described above. The simple stochastic
scheme, the Markov process method for the occupation num-
ber, and the Gillespie method yield results that agree within a
5% error. The Langevin method does not reproduce accurate
results(see Figs. 4 and 5). The disagreement is particularly
large in the absence of synaptic noise when the average time
interval between subsequent spikes diverges for large cluster
sizes.

The computation times for the different algorithms are
compared in Fig. 6. For the simple stochastic method, the
simulation times increase linear with the number of the chan-
nels in the cluster. The compute time for the Gillespie
method also increases linear in size since the time steps—
drawn from an exponential distribution with a linearly de-
creasing decay time—become smaller as the cluster size in-
creases. The Gillespie method is, however, much more
efficient than the simple stochastic method. The occupation
number method appears to us as the most efficient method. It

FIG. 4. Comparison of the average time intervals between sub-
sequent action potentials obtained from spike trains of 5000 action
potentials fors=0 ands=2 mA/cm2. (x): Langevin method at
s=0, s* d: occupation number method ats=0, s+d: occupation num-
ber method ats=2 mA/cm2, (square): Langevin method ats
=2 mA/cm2.

FIG. 5. Comparison of the relative fluctuations[Eq. (21)] of the
intervals between subsequent action potentials obtained from spike
trains of 5000 action potentials fors=0 ands=2 mA/cm2. (x):
Langevin method ats=0, s* d: occupation number method ats=0,
s+d: occupation number method ats=2 mA/cm2, (square):Lan-
gevin method ats=2 mA/cm2.

FIG. 6. Comparison of the compute times for clusters of Na+

and K+ channels to generate a train of 5000 action potentials using
the simple stochastic methods+d, the Markov process for the occu-
pation number(x), and the Gillespie methods* d.
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leads to faster code with no cost in accuracy since(1) several
channels are updated at each time step and(2) the time in-
tervals are fixed independent of the cluster size.

In order to further verify the accuracy of our simulations,
we have verified(1) that the results obtained with the sto-
chastic schemes approach the deterministic Hodgkin-Huxley
equations when the ion channel number is large and(2) that
our results agree with those in Ref.[8].

The Langevin method does not reproduce accurate results
for small and large cluster sizes and therefore we did not
compare the compute times of this method.

A. Average interspike interval of the ion channel cluster

We consider the combined effect of channel noise and
synaptic noise on the average interspike intervalkTl as
shown in Fig. 7 as a function of the cluster size in the ab-
sence of an external stimulus. The fraction and density of
sodium versus potassium channels are kept constant while
the cluster size is increased. In the case of vanishing synaptic
noise, the average interspike intervalkTl first decreases with
increasing area of cluster, but then increases again since for
infinitely many channels the deterministic Hodgkin-Huxley
model is approached. In the presence of synaptic noise, the
spiking rate does not decrease to zero as the size of the
cluster becomes large. The average spiking rate approaches
for large cluster sizes a constant value which is determined
by the synaptic noise only. This value, in fact, islarger than

the spiking rate for small clusters where additional channel
noise is present. We thus encounter the paradoxial situation
that channel noise in addition to synaptic noise can actually
reduce the spontaneous firing rate. To understand this phe-
nomenon it is insightful to consider the two extreme situa-
tions of an infinitely large cluster of sodium and potassium
channels with synaptic noise and a cluster of three sodium
channels and one potassium channel. We set the magnitude
of the variances of the synaptic noise as 5mA/cm2. The
membrane potential, the fraction of open sodium ion chan-
nels, and the fraction of open potassium ion channels in the
case of an infinite cluster size are plotted in Fig. 8. Here the
membrane potential fluctuates about its rest state due to the
synaptic noise. An action potential is fired when the mem-
brane potential exceeds a threshold(of about −55 mV)
which is determined by the deterministic Hodgkin-Huxley
equations. The average time interval between two successive
spikes is determined by the probability for the membrane
potential to cross the threshold.

In the other extreme case, a small cluster of three sodium
channels and one potassium channel is considered. The time
course of the membrane potential, the number of open so-
dium channels, and the number of open potassium channels
is shown in Fig. 9. As can be seen in Fig. 9(a), an action
potential is fired exactly when one sodium channels opens,
although the membrane potential is well below the firing
threshold of the deterministic Hodgkin-Huxley equations
(about −55 mV). In Fig. 9(b), we show a trace of the mem-
brane potential in comparison with the number of open chan-

FIG. 7. The average time interval between two subsequent ac-
tion potentials(in ms) versus membrane area(in mm2) at s=0s+d,
s=2 mA/cm2 s* d, s=3 mA/cm2 (x), and s=5 mA/cm2

(square). These results were obtained with the occupation number
method.

FIG. 8. The membrane potential in millivolt, the fraction of
open sodium and potassium channels are shown as a function of
time for an ion channel cluster with infinitely many channels. The
variance of the external noise is 5mA/cm2. For better visibility,
the fractions of open channels are multiplied by 20.

FIG. 9. The membrane potential(in millivolt ),
the number of open sodium ion channels and the
number of open potassium channels are shown as
a function of time for the membrane with one
potassium channel and three sodium channels.
The variance of external noise is 5mA/cm2.
The number of open channels have been multi-
plied by a factor of 20.
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nels where the membrane potential is wellabovethreshold
but no action potential is fired. In contrast to the mechanism
of action potential generation by large clusters, the mecha-
nism for small clusters is not determined by the firing thresh-
old of the membrane potential, but rather by the single-
channel kinetics. To see this we show in the following that
the average time for any(of the three) sodium channels of
the cluster to open after they all have been reset(after action
potential) to a state where all gates are closed agrees well
with the average time interval between two successive
spikes. In other words, we show that the average interspike
interval is determined by the activation time of the sodium
channels. A single sodium channel(see Fig. 3) is described
by the following set of kinetic equations in which the rates
out of the open statem3h1 are discarded, i.e., thus generating
the cumulative probabilityPostd=fm3h1g for the probability
that the channel has opened in the time intervalf0:tg

d

dt
fm0h1g = ahfm0h0g + bmfm1h1g − sbh + 3amdfm0h1g,

d

dt
fm0h0g = bhfm0h1g + bmfm1h0g − sah + 3amdfm0h0g,

d

dt
fm1h1g = ahfm1h0g + 3amfm0h1g + 2bmfm2h1g

− sbm + 2am + bhdfm1h1g,

d

dt
fm1h0g = bhfm1h1g + 3amfm0h0g + 2bmfm2h0g

− sbm + 2am + ahdfm1h0g,

d

dt
fm2h1g = ahfm2h0g + 2amfm1h1g − s2bm + am + bhdfmih1g,

d

dt
fm2h0g = bhfm2h1g + 2amfm1h0g + 3bmfm3h0g

− s2bm + am + ahdfmih1g,

d

dt
fm3h1g = ahfm3h0g + amfm2h1g,

d

dt
fm3h0g = amfm2h0g − sah + 3bmdfm3h0g, s16d

with the initial conditions

fmihjg = H1 for i = j = 0

0 otherwise.
s17d

Assuming for now that the voltage is clamped, the solu-
tion for this set of equations for one single sodium channel is
independent of the potassium conductance and can be solved
easily for the cumulative probabilityPostd. Since the sodium
channels are independent, the cumulative probability that
any of the three sodium channels has opened within the time
interval f0:tg is given by

P3std = 1 − f1 − Postdg3, s18d

and thus the probability density of reopen times of any chan-
nel within the cluster of three sodium channels reads

r3std =
d

dt
P3std = 3Ṗostdf1 − Postdg2, s19d

where the dot indicates a derivative with respect to timet.
The average opening time can then be obtained from

kt3l =E
0

`

tr3stddt. s20d

Since the voltage is fluctuating for a cluster of three so-
dium and one potassium channel(see Figs. 8), the clamped
voltage in the rate equations[Eq. (16)] is replaced by the
average voltage of −55.49 mV. Plugging the solution of
Eq. (16) into Eqs.(17)–(20) one finds the average opening
time of 58.18 ms. This number compares favorably with the
average interspike interval of 58.71 ms for a cluster of three
sodium and one potassium channel obtained by stochastic
simulations. This agreement supports the above stated hy-
pothesis that firing of action potentials in small channel clus-
ters is determined by single-channel kinetics and not a
threshold of the membrane potential.

As the cluster size is increased, the probability of opening
just one sodium ion channel will increase since more sodium
channels are available. Thus, the spontaneous firing rate in-
creases with increasing cluster size and the average time in-
terval between subsequent spikes decreases—as can be ob-
served in Fig. 7. When the cluster size further increases,
opening of single sodium channels will not always trigger an
action potential, a critical fraction of all available sodium
channels is required to be open—consistent with the mem-
brane potential crossing a threshold.

Thus the observed reduction of the spontaneous firing rate
in spite of additional channel noise reflects a change in the
mechanism by which spikes are generated as the ion channel
clusters become smaller.

As already mentioned earlier, the Langevin approximation
does not accurately reproduce these results.

B. The relative fluctuation of average interspike interval

The variability of the interspike intervalsT is described
by the relative fluctuations

h =
ÎksT − kTld2l

kTl
. s21d
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The relative fluctuation of the interspike intervals are plot-
ted versus the cluster size for various values of the strength
of the synaptic noise in Fig. 10. In the absence of synaptic
noise, the fluctuations of the intervals decrease with increas-
ing cluster size until they reach a minimum. For further in-
creasing cluster sizes, the fluctuations of the intervals in-
crease again(see also Refs.[12,13]). The power spectra of
the spike trains shown in Fig. 11 confirm that the spike train
exhibits a maximum temporal periodicity at the cluster size
where the relative fluctuations are at minimum

The power spectrum of the spike train generated by a
membrane with area 0.1mm2 is relatively flat. At a mem-
brane area of 5 mm2 (near the point with minimal relative
fluctuation) the power spectrum exhibits a peak close to the
angular frequency of 0.37/ms, which corresponds to an av-
erage interspike interval of about 17 ms, consistent with the
minimum average interspike interval(see Fig. 7). The power
spectrum confirms the maximum temporal coherence of the
spike train at the same cluster size where the cluster fires
action potentials at it’s highest rate.

This phenomenon, where optimal coherence is achieved
at a certain cluster size resembles somewhat the phenomenon
of coherence resonance[17] or autonomous stochastic reso-
nance[18,19] since the intensity of the fluctuations is deter-

mined by the size of the cluster. Thus optimizing the size of
the cluster is somewhat equivalent to optimizing the noise
strength. The relation between these phenomena, however, is
not so clear since the relation between cluster sizeN and
noise intensity is not unique as the spontaneous firing rate(a
measure of the noise level) exhibits a nonmonotonous behav-
ior.

As shown in Fig. 10, synaptic noise alters the relative
fluctuations mostly at larger membrane areas, where the
channel-noise induced spikes are infrequent. On the other
hand, when the area of membrane is small, the statistical
features of the neuronal spike train are mainly determined by
channel noise.

V. DISCUSSION

We have compared the average interspike interval and the
relative fluctuations of trains of action potentials generated
by small and large clusters of ion channels. For large ion
channel clusters, action potentials are elicited by synaptic
noise when the membrane potential exceeds an excitation
threshold. For small ion channels clusters, channel noise
dominates over synaptic noise. Action potentials are gener-
ated at a frequency that is determined by the single-channel
kinetics and is only very weakly depending on the synaptic
noise strength. We have further shown that at the size of the
ion channel cluster at which a maximum spontaneous spik-
ing rate is observed, the spike trains exhibit maximum tem-
poral periodicity. Different stochastic algorithms have been
compared. Because the simple stochastic method requires the
least number of assumptions it isa priori the most accurate
method. For spike trains of 5000 spikes the occupation num-
ber method and the Gillespie method reproduce the results
obtained with the simple stochastic method within 5% error.
If the membrane comprisesN ion channels, 4N random num-
bers are required for the simple stochastic method. Thus, the
simulation time of the simple stochastic method increases
linearly with the number of ion channels. In the Gillespie’s
method, the step time is inversely proportional tol (15).
Since the value ofl is linearly proportional to the number of
ion channels number, the simulation step time is inversely
proportional to the ion channel number. Thus, the simulation
time of the Gillespie’s method is also linearly proportional to
the number of ion channels—though with a smaller slope
than the simple stochastic method. In each simulation step,
the occupation-number method needs to generate a fixed
number of 28 random numbers regardless of the number of
ion channels number. Thus, the simulation time is approxi-
mately independent of the number of the ion channels; in our
tests it was the fastest method for a given accuracy. The
Langevin-method—although designed for large ion channel
clusters generates accurate results only for intermediate clus-
ter sizes.
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FIG. 11. The power spectrum curves of spike trains generated
by membranes with area=0.1mm2 (solid line), area=5 mm2

(dotted line), and area=50 mm2 (dashed line) in the absence of
synaptic noise.

FIG. 10. The relative fluctuations(21) vs membrane area(in
mm2) at s=0 s+d, s=2 mA/cm2 s* d, s=3 mA/cm2 (x), ands
=5 mA/cm2 (square). These results were obtained with the occu-
pation number method.
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